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Abstract 

The aim of this study was to develop a method that 
could automatically evaluate the quality of ECG 
recordings. 

In several situations, people performing the recording 
don’t have the knowledge to evaluate the quality of the 
ECG and an immediate feedback about it would be 
useful. 

Since there is not a consensus on how to define and 
quantify ECG quality, we applied self learning techniques 
starting from a set (N=1000) of randomly selected ECGs 
from our internal repository. 

The full set of ECGs was blindly flagged by an expert 
cardiologist and subsequently analyzed by AMPS 
software which automatically computes a set of quality 
metrics. These quality parameters were used to train a 
neural network and build a decision tree. 

The performance of the proposed solutions were 
evaluated using the mean squared error (MSE) between 
expected results (from the ECGs set) and obtained results 
(from neural network and decision tree). 

The MSE resulting from the neural network and the 
decision tree were 0.01 and 0.004, respectively, 
indicating an error in range of 1%. 

1. Introduction

The issue of the quality assessment of an ECG is not 
widely described in the literature, even though an 
immediate feedback would prove useful during the 
acquisition phase. In addition, it is not clear which quality 
measures are available and which ones are mostly used.  

Some of the proposed methods are based on QRS 
detection[1], on noise quantification[2] and on signal 
mobility factors[3]. 

The aim of this paper is to introduce a method based 
on self-learning techniques, using a set of pre-evaluated 
ECGs to train a neural network (NN) and build a decision 
tree (DT). 

2. Methods

A set of 1000 ECGs, with 12 leads and 10 seconds 
long, was randomly chosen from AMPS internal 
repository and each one of them was evaluated, in terms 
of quality, and blindly flagged as “good quality” or “bad 
quality” by an experienced cardiologist. 

The set included 65% of the ECGs flagged as “good”, 
and the remaining 35% marked as “bad”. 

The full set was subsequently analyzed by AMPS 
software (CalECG), which automatically computes a set 
of quality metrics. 

The metrics considered for this study were: low 
frequency noise (LFNoise, obtained removing the high 
frequency band before assessing the noise level), high 
frequency noise (HFNoise, obtained removing the 
baseline wonder and the QRS complexes before 
computing the noise), an index representing the 
complexity of the repolarization signal (Tcomplex, 
obtained accounting number of zero-crossing of the first 
derivative of the repolarization section of the ECG signal) 
and a reliability index correlated with QRS detection 
performance of the embedded ECG measuring algorithm. 

The last mentioned metric included 2 parameters: the 
difference between the number of detected QRS with the 
maximum and the minimum number of expected QRS 
peaks, DiffMax and DiffMin respectively. 

The expected number of QRS was estimated from the 
Heart Rate (HR) measured during the recording process: 
number of maximum expected QRS = 
round(HR*10s/60+1); number of minimum expected 
QRS = round(HR*10s/60–1). 

The noise metrics (LFNoise and HFNoise) have been 
computed performing a linear combination among the 
noise value of each of the 12 leads. 

Each ECG was represented by five metrics and one 
status (0=good quality, 1=bad quality), an example is 
shown in Table 1. 

Table 1. example of ECG metrics which represents the 
quality of an ECG, the noises values are represented in μV, the 
differences between detected and expected beats are represented 
in absolute value. Here 5 ECGs are reported (out of the overall 
1000). 
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HFNoise  LFNoise Tcomplex DiffMax DiffMin status 
3.51 10.8 1 0 2 0 
3.12 8.04 1 1 1 0 
5.40 8.57 0 1 1 0 
3.34 8.26 2 1 1 0 
7.56 14.9 1 1 3 1 

 
The metrics were used as input of the self-learning 

techniques, and the status as the output (goal). 
The two different adopted techniques (NN and DT) 

were evaluated using the mean squared error (MSE) 
between the results obtained with the self-learning 
methods and the goal results (status). 

To build the two different self-learning methods, 80% 
of ECGs was involved in the training set (used to train the 
NN and build the DT), while the remaining 20% was only 
used in the test phase. 

 
2.1. Training the neural network 

The following step was to identify the structure of the 
NN to represent the ECG quality issue. 

This problem is well represented by a continuous 
function, then we decided to implement a NN with one 
hidden layer (able to represent any kind of continuous 
function [4]). 

For the reduced number of input and output nodes, 5 
(one for each metric) and 1 (the goal status) respectively, 
we implemented a fully connected network. 

The number of nodes used at the hidden layer was 
decided performing several tests, trying different 
configuration of the NN varying the number of hidden 
nodes, in this way we were able to find out the best 
configuration able to describe the ECGs quality issue. 

The NN adopted was a feed forward network, using 
the Levenberg-Marquardt algorithm[5], which is a 
training algorithm based on back-propagation. 

The large amount of examples in the training set 
allowed to further divide it to form an additional set, the 
validation set. 

The validation set is generally used to preliminary 
validate the training process while it is in progress, giving 
a feedback on the generalization error and stopping the 
training process when this error increases (overfitting) 
[6]. 

We tested several configurations of the net changing 
the number of nodes at the hidden layer (10, 8 and 5), and 
the percentage of subdivision of the training and 
validation sets (40-40%, 50-30%, 55-25% and 60-20% of 
the total amount of examples). 

For each test, the examples taken into account to 
populate the three different sets (training, validation and 
test) were randomly chosen from the starting set of 1000 
ECGs. 

For each configuration three different NN were 
trained, to examine the behaviour at each run of training. 

The configurations with oscillating results were  
discarded. 

This method was implemented using MATLAB’s 
neural network package and the results of the different 
configurations were compared. 

 
2.2. Building the decision tree 

As described above, to build the DT, the 80% of the 
ECGs from the starting set was involved and the 
remaining 20% was used during the test phase. 

To build the decision tree we used Weka[7]; a tool 
designed ad hoc to build solutions to self-leaning 
problems. 

 The DT was built starting from the training set, 
following the standard C4.5[8], which involves the 
pruning of the non-significant leaves, each leaf 
representing a quality metric of the ECG. 

 The results obtained with this method were compared 
with the ones from the NN. 

 
3. Results 

The results regarding the several configurations of the 
NN are shown in Table 2. 

 
Table 2. Performance of the different configurations of the 

NN: only the best performances (out of 3 runs) of each 
configuration are here reported. 

  
 Hidden 

nodes 
% 

training 
% 

validation 
MSE 

validation 
MSE 
test 

a) 10 40 40 0.005 0.013 

b) 10 50 30 0.005 0.015 

c) 10 55 25 0.001 0.011 

d) 10 60 20 0.002 0.010 

e) 8 40 40 0.001   0.029 

f) 
8 50 30    < 0.001   0.017 

g) 8 55 25 0.004   0.015 

h) 8 60 20 0.005 0.011 

i) 5 40 40 0.0142 0.005 

l) 5 50 30 0.0216  0.029 

m) 5 55 25 0.016   0.005 

n) 5 60 20 0.015 < 0.001 
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The configuration having 8 and 10 nodes in the hidden 
layer had no appreciable differences among the three runs 
performed. These configurations were considered stable. 

The configuration with 5 hidden nodes presented 
differences among the runs. These differences are shown 
in Table 3.   

 
Table 3. Performance of the three different NN training runs  

in presence of a hidden layer having 5 nodes. 
 

Config. Run 
MSE 

validation 
MSE 
test 

i) 1 0.014 0.005 
i) 2 0.022 0.029 
i) 3 0.016 0.005 
l) 1 0.015 <  0.001 
l) 2 0.010 0.011 
l) 3 0.022 0.029 
m) 1 0.02 0.01 
m) 2 0.016 0.032 
m) 3 0.021 0.015 
n) 1 0.022 0.013 
n) 2 0.011 0.025 
n) 3 0.019 0.041 

 
The differences among the three runs for each 

configuration were visible and not negligible, indicating 
that the configuration with 5 nodes in the hidden layer is 
not stable and its behavior can change not only when the 
subdivision of the training set changes, but even when the 
same configuration is used.  For this reason, the 5 nodes 
configuration was discarded. 

The best performances were given by the configuration 
with 10 hidden nodes, having a MSE on the test set going 
from 0.01 to 0.015 in the different configurations, which 
indicates an error slightly greater than 1%. The MSE 
regarding the validation set went from 0.001 to 0.005, 
that indicates a very low presence of overfitting. 

Furthermore, the implemented NN had 10 nodes at the 
hidden layer and was trained using a training set 
composed of 350 ECGs and a validation set composed of 
250 ECGs. The performances were then tested using a 
test set of 200 ECGs. 

Also the DT responded with good performances, with 
a MSE equals to 0.004 on the training set (composed by 
800 ECGs). 

Analyzing the DT, further information quality metrics 
can be assessed. During the pruning process of the 
decision tree, the Tcomplex metric was pruned, and then 
wasn’t taken into account to evaluate the ECG quality. 
This could be due to the fact that this metric is not strictly 
related to the quality of an ECG, or that it does not give 
additional information compared to the other metrics. 

In Figure 1, the structure of the DT is visible, 
indicating how the metrics are taken into account for the 

evaluation of the quality of an ECG. 
The metrics related to the detection of the QRS were 

the most indicative: if the detection algorithm fails on 
detecting all the QRSs, the recording is most-likely 
presenting corrupted signal. 

The other predictive metrics are HFNoise and LFNoise 
while, as described before, Tcomplex was not taken into 
account. 

 

Figure 1. Structure of the decision tree built starting from a 
training set of 800 ECGs: the parameter Tcomplex was pruned, 
the other metrics were all taken into account to evaluate the 
ECG quality. 
 

 
4. Conclusions 

This preliminary study gave promising responses: the 
errors were acceptable (slightly higher than 1% using the 
NN and less than 1% using the DT) and some feedback 
about the correctness of the proposed metrics were 
obtained. 

This model can be further strengthened, retraining the 
NN and rebuilding the DT using a larger set of ECGs and 
including other metrics which may better and 
heterogeneously represent the quality of an ECG.  

The obtained results indicated that the proposed 
approach is viable and the example set should be 
enlarged, to obtain a stronger and more reliable model. 
Unfortunately this step would involve many hours of the 
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cardiologist’s work in the ECG flagging process. 
With these preliminary results, this approach can be 

useful assessing the quality of ECGs in the context of 
data analysis of large quantity of ECGs, for example 
within multi-department clinical organizations and 
ultimately contribute to a better care. 
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