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HRYV Spectral Analysis by the Averaged
Periodogram: Does the Total Power of the Spectrum
Really Match with the Variance of the Tachogram?
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Heart rate variability (HRV) by spectral analysis
can provide information about autonomic nervous
system activity. This is mainly achieved by focus-
ing on the low and high frequency components of
the tachogram power spectrum. Initially, this tech-
nique was applied to short recording periods in
very well- controlled conditions. Recently, the use
of HRV spectral techniques have been extended to
the ambulatory environment, and currently many
Holter systems permit analysis of long recording
periods. Use of 24-hour Holter recordings soon elic-
ited concerns essentially related to the need for
stationary data with conventional spectral tech-
niques. In addition, the recent finding of strong
correlations between high frequency spectral pa-
rameters and some time-domain indices seems to
discourage the long-term approach.

According to Fourier theory (Parseval Theorem),
the spectral total power should correspond to the
time-domain variance. However, this can rarely be
confirmed with the use of commercially available
systems, especially for Fast Fourier Transform
(FFT) approaches based on averaged Periodograms.
For example, a recent study demonstrated that 24-
hour total power calculated with three commercial
Holter systems (all FFT based) on the same set of
analog tapes was completely discordant.” In addi-
tion, the 24-hour total power of each of the three
systems was not comparable to the corresponding
time-domain variances. Most probably, the three
Holter systems are valid (the low frequency’high
frequency ratios were very similar) and the discrep-
ancies found could be related to different prepro-
cessing FFT features or to an improper application
of the method.

We are strongly persuaded that the same com-
parison performed on short-term, fully validated,
and stationary data may have led to much more
consistent results. Unfortunately, available docu-
mentation rarely provides detailed description of
the steps taken for spectral analysis. In this regard,
the blame for inappropriate use of the technique
and consequent increased skepticism for using
Holter spectral HRV can be shared between the
manufacturers and the users.

The aim of this article is to review the technical
reasons that may lead to a discrepancy between
total power of averaged Periodograms and time-
domain variance. We will then discuss the impor-
tance of these discrepancies with respect to Holter

-spectral analysis.

THE POWER SPECTRUM OF THE
TACHOGRAM

Spectral analysis is based on a mathematical
transformation that leads from the time domain
(second units) to the frequency domain (Hz units).?
For finite length, discrete time signals such trans-
formation is called Discrete Fourier Transform
(DFT).* When the number of time-domain samples
is an integer power of 2, the efficient algorithm
of Fast Fourier Transform (FFT) can be applied to
calculate the DFT.

The DFT makes sense only when applied to de-
terministic signals, i.e., for signals determined by
a mathematical expression or by a precise rule of
some type. Like all biological signals, the time se-
ries of RR intervals, or tachogram, is not a deter-
ministic but rather a stochastic signal, i.e., itis char-
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acterized by phenomena that are intrinsically ale-
atory. For stochastic signals that are further
stationary, it is more common to evaluate the
power spectral density (PSD), often referred to as
power spectrum.” The most important requirement
for a stationary time series is that both its mean
and variance should be invariant of the observation
period, a condition that the tachogram can fulfill
only during specific short periods of time.

One of the most common approaches is to esti-
mate the PSD directly from the DFT.* " This esti-
mate is called Periodogram and basically consists of
taking the square magnitude of the DFT. Generally,
before the calculation of the Periodogram, the tach-
ogram is multiplied by a smoothing window. This
operation is aimed to reduce the effect of spectral
leakage, which consists of a smearing of all the
frequency peaks caused by abrupt signal changes
at the boundary of the time series. The leakage
effect can be diminished by tapering the window
smoothly to zero at each end, at the price of a reso-
lution loss. Thus, the choice of the right window
will depend .upon which of these two effects is
more crucial.® For example, the rectangular win-
dow is the best in term of resolution but the worst
in terms of leakage; the Blackman window has a
very strong tapering (minimal leakage) but also a
very reduced resolution. The Hanning window
represents a good trade-off between the two
effects, and it is generally the one used for HRV
spectral analysis.

It has been demonstrated that the Periodogram
is an unbiased estimator, but that it is not consistent
(which means that its variance does not approach
zero with increasing window length but rather is
approximately the same size of the power spec-
trum). A well-accepted solution to this problem is
to segment the finite length time series in a number
P of sequences (eventually overlapping) and to de-
fine as an estimate of the PSD the average of the
Periodograms of each single sequence.” The aver-
aged Periodogram is a consistent and unbiased esti-
mator, as the variance of the PSD tends to zero with
increasing P. The total number of subsegments will
clearly depend on the total tachogram length, the
subsequent length, and the percent of overlapping
(which typically is set to 50%).

TOTAL POWER AND VARIANCE
Differences Due to Lack of Stationarity

Apart from some short time intervals, the tacho-
gram is not a stationary signal. The main conse-

quence is that the calculated spectrum is a poor
representation of the frequency components char-
acterizing the time series. In the case of averaged
Periodogram, a further consequence is that the to-
tal power of the PSD does not match with the origi-
nating variance. This is due to two main effects: the
effect of windowing; and the effect of averaging.

Effect of Windowing

As a consequence of the Parseval Theorem, the
integral (area) of the Periodogram corresponds to
the variance of the windowed time series. Clearly,
this variance does not necessarily match that of
the original signal. In order to compensate for the
change of power determined by the windowing ef-
fect, the window should incorporate an appropriate
scale factor, which can be obtained as follows*:
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where win] is the normalized window sequence
(w[n/2] = 1} and N is the window length. The more
the tapering effect of the window, the larger will
be the factor. For the rectangular window the scale
factor is equal to 1; for the Hanning window it is
V8/3. The scale factor can be directly incorporated
within the window coefficients, or alternatively ap-
plied in the frequency-domain. In the latter case,
the factor has to be squared (a constant in the time-
domain is square transformed in the PSD). Unfortu-
nately, the full compensation of the scale factor
takes place only in perfectly stationary conditions,
when the oscillatory components uniformly char-
acterizes the time series. To understand this, we
can imagine a component only present at the begin-
ning of the time series, which will be practically
eliminated with the application of a (nonrectangu-
lar) window. In this case, even with the proper
compensating factor, the variance of the windowed
data will not correspond to the variance of the origi-
nal tachogram; it will be larger or smaller de-
pending on the magnitude of the components that
had been canceled out (at the boundaries of the
segment) with respect to the components that had
been magnified (at the center of the segment).
Sometimes the scale factor is completely omitted
with the result that (independently of stationarity)
the PSD will be constantly biased by the missing
factor.
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Effect of Averaging

As previously stated, the purpose of the averaged
Periodogram is to obtain a consistent estimation.
Because of stationarity, each subspectrum should
have the same total power (the single Periodogram
is unbiased). If stationarity is not satisfied, the total
power of the averaged Periodogram will not neces-
sarily correspond to the variance of the original
tachogram, but rather (disregarding the effect of
windowing|, to the average of the variances of all
segments. This effect is apparent for a small num-
ber of segments and tends to disappear when a
large number of segments are used, as the errors
due to each Periodogram compensate for each
other.

In addition, there are three differences not re-
lated to stationarity, i.e., effect of detrending, re-
sampling, and of integration mode.

Effect of Detrending

The most common alternative method to esti-
mate the PSD is based on a modelization of the
tachogram with an autoregressive (AR) model. In-
dependently of the series of advantages that this
method offers (which are not the aim of this arti-
cle), but rather focusing once again on the issue of
total power, we can say that the typical methdology
followed by AR models require neither windowing
nor segmentation of the data. Thus, the total power
of the PSD obtained with AR modeling is generally
closer to the variance of the original signal. How-
ever, one preprocessing feature that does affect the
variance is the so-called detrending. This feature
consists of removing very slow components in or-
der to decrease the relative importance of the
power close to 0 frequency (DC). Detrending is gen-
erally achieved by removing the regression line fit-
ted to the data, but higher order possibilities have
also been proposed. Detrending is not at all an ex-
clusivity of AR approaches; nevertheless, it has al-
most always been proposed in parallel with this
method. Independently of other factors, the effect
of detrending will intuitively be a reduction of total
power.

Effect of Resampling

Since the clock of the tachogram is the sinus node
(one observation per beat), its natural frequency
units are cycles/beat rather than cycles/s (Hz). In
other words, if we directly apply the average Peri-

odogram to a tachogram, the frequency units ob-
tained will be in cycles/beat and the Nyquist fre-
quency of the system will be of 0.5 cycles/beat (i.e.,
half of the sampling period).? In order to obtain Hz
units we could either divide the cycles/beat by the
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Figure 1. Effect of Hanning window on stationary and
nonstationary data. Panel A depicts a sinusoid (0.05 Hz)
before and after application of Hanning window (with
scale factor incorporated); the variance of the sequence
is conserved. Panel B shows the effect of the same win-
dow applied to 256 seconds of a nonstationary tacho-
gram (resampled at 4 Hz). Despite the correcting scale
factor, the variance of the windowed segment is quite
different (reduced) due to the elimination of the compo-
nents at the boundaries of the segment, which have a
larger amplitude with respect to the central ones.
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Figure 2. Effect of averaging Periodogram on nonstationary data. Panel A shows a 512-second tachogram (resampled
at 4 Hz) with a total variance of 1932 ms?. By applying averaged Periodogram with 50% overlap three segments are
obtained (indicated with solid lines under the tachogram). Rectangular window is applied so that the window effect of
Figure 1 is annulled. Panels B, C, and D depict the PSDs obtained for each of the segments. Panel E is the averaged
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average RR interval at the end of the procedure
(obtaining the so-called equivalent Hz), or to inter-
polate the tachogram beforehand to obtain a uni-
formly samples time series (resampled tachogram).
The former option is typical of AR approach,
whereas the latter is more common in FFT ap-
proaches. From a theoretical point of view, the in-
terpolated tachogram should be obtained by uni-
form sampling of the continuous time tachogram
reconstructed with the application of an ideal low
pass filter.” However, this procedure is tedious and
more practical algorithms, such as linear interpola-
tion or the more accurate boxcar filter,” had been
proposed. Depending on the resampling method
applied, the variance of the resampled tachogram
could be sensitively modified. Then, it should be
clear that the total power of the calculated PSD will
have to be matched to the variance of the interpo-
lated tachogram.

Effect of Integration Mode

The total power can also be affected by the way
the spectrum is integrated. Due to the symmetric
properties of the PSD, the integration is generally
performed only on the positive frequency axes and
subsequently doubled. Since the spectrum itself is
a discrete function, the area is an approximated
measure generally performed with either a zero
hold method (total area is the sum of all rectangular
bins) or with a first order function (total area is the
sum of all trapezoids|. Clearly, the calculated total
power will be different in the two cases. If the
spectrum is characterized by a very high DC that
decreases quickly (as it is often the case), the differ-
ence between the two methods can be significant.

Of course, the precision of integration is also di-
rectly influenced by the frequency resolution,
which depends on the window length. Neverthe-
less, the trapezoid rule yields a smaller error, as it
better fits the shape of the PSD in the frequencies
very close to DC.

All the effects described are somewhat indepen-
dent from each other. As a result PSD total power
may differ significantly from the initial tachogram

variance. In Figures 1 and 2 we show two examples
that clearly reflect the first two described effects,
which are the ones that largely influence Holter
data. Figure 1 shows the example of windowing
nonstationary data with Hanning window. Figure 2
gives an example of a three segment averaged Peri-
odogram. In order to isolate only the averaging ef-
fect, the window applied in this example is the
rectangular one, which by definition does not affect
the variance.

DISCUSSION AND
RECOMMENDATIONS

The main purpose of spectral analysis is to dis-
cern the frequency content of signals in order to
perform opportune processing within specific sub-
bands. In this regard, it does not really matter if
the spectrum is missing a scaling factor, especially
if this is the consequence of appropriate mathemat-
ical operations applied to improve the discrimina-
tion of the various components. After all, the vari-
ance is a parameter very easily calculated in the
time-domain, and the spectral analysis was never
conceived to recalculate this index.

Despite the existence of a mismatch between
variance and total power, a very strong correlation
between the two has been observed in both normal
and postinfarction populations.'”'" However these
results were obtained with a single 24-hour spec-
trum performed with an alternative methodology
(in-toto method)'® which, by its definition, does not
implement either time-domain windowing or aver-
aging of subspectra. Good correlations were also
found by comparing powers obtained again with
24-hour in-toto method, and in averages of 5-mi-
nute Periodograms over the same period.'* Authors
were not exhaustive in terms of windows used.
Nevertheless, the correlations obtained confirmed
that the average of many Periodograms (288 5-min
segments) somewhat compensates the mismatches
of each single spectrum.

Even if, with an opportune description of the
method, the mismatch does not represent an obsta-
cle, an elegant solution to the dilemma is to use

Periodogram. Total powers are calculated with the trapezoid rule. All spectra are plotted with the same scale. As it
can be observed, the three single spectra do not have the same components, as it should be for stationary data. In
particular the strong peak around 0.08 Hz of the first segment is completely absent in the third one. Total power of
the averaged Periodogram (1845 ms?) is about 5% different with respect to the total variance of the original tachogram.
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normalized units, i.e., to normalize the power cal-
culated within a band with respect to the total
power, or with respect to the power above a certain
cutoff.'* In this case, the concept of total power is
intentionally left out. Normalized units are particu-
larly useful when analyzing short-term tachograms,
where the variance can be largely determined by
very low trends outside the range of interest. In-
deed, the behavior of the relative importance of
low frequency and high frequency bands during
24-hour Holter recordings has clinical relevance.
The main limitation associated with the a priori use
of normalized units is in that they do not allow
access to the absolute amplitude of the oscillations
within such bands.

In conclusion, the most convenient solution, as
recommended by the ESC task force document re-
cently published in this Journal,'® should be to pro-
vide both raw power and normalized power. In
addition, Holter commercial manuals should in-
clude detailed description of all the technical fea-
tures implemented. The perfect match between a
PSD total power and variance of the signal may
still be recommended for simulated stationary data
during the validation procedure of each specific
methodology.

Independently of total power, it may be worth-
while to identify Holter "best portions'’ to perform
spectral analysis. The choice of best portions
should be based on stationarity by imposing, for
instance, the conservation of mean and variance
(within a certain tolerance) in subperiods of these
best portions. Clearly, in a Holter environment, this
would mean to isolate the analysis on a very se-
lected amount of time, and to raise the concerns of
those who consider ambulatory monitoring a tool
for analyzing the largest amount of information.
Nevertheless, the selection of best periods, by opti-
mizing the environment, may highlight more im-
portant frequency-domain features, and by so do-
ing, to reclaim the importance of Holter spectral
analysis.

APPENDIX

The Fourier Transform (FT) of a signal is a mathe-
matical transformation that gives information on
the frequency content of the signal. This transfor-
mation leads from the time-domain (second units)
to the frequency-domain (Hz units). For discrete
time signals, the FT is a periodic continuous func-
tion with periods equal to the sampling frequency.”

All the information can then be obtained by re-
taining one period, which in general is the one cen-
tered around 0 Hz. In order to make computer anal-
ysis possible, the FT must also be discretized (spec-
tral sampling). If the discrete time signal x[n] has
finite length, the Discrete Fourier Transform (DFT)
is the transformation that provides spectral sam-
pling.” For the finite length sequence x[n], the DFT
is defined as follows:
L-1
V[k] = z xlnle-j:'z:r.’l,!ku

n=0

k=0,....,6 L1 (A1)

where n is the time-domain index and k is the fre-
quency-domain index. In Equation (A.1) both x[n]
and V[k] are assumed to have length L. If the length
of x[n) is M < L, the sequence x[n] will be enlarged
of (L — M) samples of zero amplitude (zero pad-
ding). The situation with M > L is unpractical be-
cause in that case some of the discrete time samples
would be ignored by the transformation of Equa-
tion (A.1).

Both the FT and the DFT make sense only when
applied to deterministic signals. For nondetermin-
istic signals (such as the tachogram) that can be
further considered as realizations of the stationary
random processes, it is more common to evaluate
the power spectral density (PSD).* One of the most
common approaches is to estimate the PSD directly
from the DFT of a finite length segment of a station-
ary time series. The concept of finite length implic-
itly assumes that the infinite length time series is
multiplied (“windowed'') by a finite length se-
quence. The general expression of a Periodogram
is the following:

L—1
1[k] :% |VIk]|* = %l Y win]x[n]e 2 1kn |2

n=0

k=0 ....,L1 (A2

where x[n] is the original signal, w[n] is the applied
window, T is the sampling period, and L the win-
dow length. Basically, the Periodogram is the
square magnitude of the DFT of the windowed time
series normalized by the scale factor T/L, which
assures proper units for the power spectrum (ms?”/
Hz if x[n] is expressed in ms). The PSD is a real
function (i.e., it has no phase information) and for
each frequency it yields the relative density of
power. In addition, the PSD is an even function,
which means that it is symmetric with respect to
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the 0 Hz axis. As a consequence of the Parseval
Theorem, the area of the PSD (total power) corre-
sponds to the variance of the time-domain se-
quence.

an
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