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Introduction

According to the statistics (2016 update) from the American Heart
Association (AHA), 15.5 million people over 20 years old in the US
have coronary heart disease, and every 42 s, an American suffers from
myocardial infarction (MI) [1]. For patients admitted into hospitals
with suspected acute coronary syndrome (ACS), electrocardiography
(ECG) is an important risk-stratification and assessment tool to guide
further treatment for MI, and ST-segment changes in ECG constitute
the principle biomarker for such purpose. However, b25% of ACS pa-
tients present ST elevation (ST-elevation MI, or STEMI) and receive im-
mediate medical attention. For the other 75% of myocardial infarctions,
includingnon-ST elevationACS (NSTE-ACS) or unstable angina (UA) [2],
continuous ST-segment monitoring is crucial for early identification of
transientmyocardial ischemia (TMI, precursor ofMI) and to prevent ad-
verse clinical events.

Unfortunately, current ST-segment monitoring systems have yet to
fulfil their designed purpose due to excessive false positive alarms.
One study tracking a 16-bed intensive cardiac care (ICC) unit during a
31-day period discovered an average of 200 ST alarms per day, even
with stricter trigger threshold at 200 μV being adopted in the facility in-
stead of the recommended 100 μV, and over 90% of them are non-
actionable alarms [3]. These nuisance alarms further contribute to the
issue of alarm fatigue, which is ranked as one of the top 10 technology
hazards by the Emergency Care Research Institute (ECRI) in 2014 [4].
Alarm fatigue is described as the sensory overload caused by the over-
whelming visual and auditory alerts generated by bedside physiologic
motors to caregivers, whichmay lead tomissed critical clinical opportu-
nities [3]. Due to alarm fatigue, a recent statement from AHA has de-
creased the class of recommendation (COR) for ST alarms from class I
(should be performed) to class IIa (is reasonable to perform) [5]. Thus,
there is an urgent unmet need for ST-segment monitoring algorithms
with improved precision.

Recent advancement of deep learning has transformed many fields
of study by taking advantage of big data and modern computing re-
sources. The tremendous amount of digitized ECG data generated in
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clinical facilities meet well with the prerequisite for applying deep
learning and have sparked various ECG research. One study adopted
the convolutional neural network (CNN), one of the deep learning algo-
rithms, to classify various types of ECG arrhythmia and has achieved
cardiologist-level performance [6]. Another study used the CNN model
to learn features in ECG that can screen patients with paroxysmal atrial
fibrillation [7]. One more study took advantage of both convolutional
and sequential models in deep learning to classify ECG signals from pa-
tients with coronary arterial disease from normal ECG [8], only to name
a few. Inspired by these pioneering studies, the present work starts off
to investigate the application of deep learning in detecting significant
changes in ST segments, in an effort to improve the monitoring
precision.

Expert cardiologists are able to identify ischemic changes in ST seg-
ments by visual inspection of ECG tracings in spite of the existence of
moderate contamination of the waveform (body position change, mo-
tion artifact, numerous physiological confounders, etc.), where conven-
tional ST-segmentmonitoring algorithms using numerical thresholding
have usually failed. Addressing this circumstance, the present study
adopts an image-based approach for sample representation to tackle
the detection of ST changes as a computer visual task to leverage deep
learning techniques, which have demonstrated close-to or even
surpassed human performance [9]. In the present study, convolutional
models are trained through a transfer-learning scheme from a publicly
accessible long-term ECG database with expert annotation of ST events
[10], and then are tested on an independent testing set in a simulated
real-time fashion. Both qualitative and quantitative evaluations are per-
formed to provide comprehensive examination of model performance.
We further investigate various parameters during model building and
their potential impact on the model performance, including finetuning
parameters during training sample selection, and establishing a learning
curve by varying number of ECG recordings in the training set.

Methods

Data source

The Long-Term ST Database from the Physionet is selected as the
data source to generate training and testing samples [10,11]. The data-
base contains 86 whole-day Holter ECG recordings from 80 human
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Table 1
Full list of training/testing recordings used in the present study. Items shaded in grey are
30 recordings randomly selected as the training set. For testing set, the prevalence of each
class is presented as (#ST samples: #non-ST samples).
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subjects with 2- or 3-lead configuration. The signals are recorded at the
sampling frequency of 250 Hz and at 12-bit resolution within the range
between −10 to 10 mV. The database provides single-lead annotation
information related to significant ST episodes (including ischemic and
heart-rate related ST changes), significant ST shift (due to axis shift or
conduction change), noisy and unreadable segments (as shown in
Fig. 1), based on three types of protocols to capture significant ST
changes. The present study adopts annotation information from the
protocol B [10], which defines significant ST changes to be exceeding
100microvolts continuously for at least 30 s. For consistency, all record-
ings in the database that are with 2-lead configuration, are with signif-
icant ST episodes and are from subjects with a single recording are
selected in the present study. ECG leads used inmost of these recordings
are the combination of one of precordial leads (V2, V3, V4 or V5) with
modified limb lead III (MLIII). This results in 59 recordings from 59 dis-
tinct subjects for further analysis. We then randomly select 30 record-
ings as training data and the rest as testing data. A full list of
recordings in training/testing sets can be found in Table 1.

Image sample generation

We take an image-based approach for sample generation, which has
been successfully adopted for assessment of signal quality in ECG signals
[12]. Specifically, we take the snapshots of 10-second ECG images from
continuous single-lead ECG waveform as training/testing samples. In
this way, monitoring ST changes is transformed into a computer vision
task, which can be well approached using the convolutional neural net-
work. Each 10-s ECG trace isfirstly overlaidwith a grid same as the stan-
dard ECG paper (40 ms per horizontal interval; 0.1 mV per vertical
interval). Then the image is transformed into grayscale colormap to re-
move redundant color information that does not contribute to the clas-
sification task, and finally saved into an 8-bit jpeg file with image
dimension of 600 px (W) by 450 px (H). These image samples are
then further resized through bilinear interpolation to adhere to the
input requirement of transfer learning using Google Inception V3.

Training/testing data preparation

For each ECG channel, we group ECG episodes associatedwith signif-
icant ST changes as the case condition (i.e. the ST condition), which in-
cludes ischemic ST and heart-rate related ST episodes (labeled in green
in Fig. 1). Then the remaining waveforms are grouped together as the
control condition (i.e. the non-ST condition; labeled in red in Fig. 1),
by excluding segments annotated as unreadable, noise or ST shift. It's
worth noting that the database provides limited annotation information
about events related to noise and ST shift, with single event time given
rather than a duration. As an approximation, the 10-s data before and
after the event time are excluded for these events.

Different sample selection schemes are designed for training and
testing sets. For the training set, balanced numbers of image samples
from ST and non-ST conditions are desirable for model training. To
achieve this, 10,000 10-second image samples are randomly selected
from non-ST ECG segments based on a uniform distribution for each re-
cording as non-ST condition. For ST condition, the number of samples to
be selected from each ST episode is determined by the total sample
number (10,000) divided by the number of ST episodes in each record-
ing. Within each ST episode, the corresponding number of image sam-
ples is selected by their temporal offsets with respect to the maxima
Fig. 1. Conceptual timeline of annotated events in the LTST database. Events marked in green
marked by black include noise, unreadable segments and sudden ST shifts, which are removed
of ST change, based on aGaussiandistributionwithmean at themaxima
of ST change and the standard deviation as a hyperparameter to tune.
The maxima of ST change are determined by the maximal ST change
within one episode, which is provided as a part of annotation informa-
tion in LTST database [10]. Such design imposes higher weights for the
selection of samples close to maxima of ST change, under the heuristic
that more representative features related to ST change can be captured
in this way. In total, there are 300,000 and 266,275 image samples for
non-ST and ST conditions selected as training samples, respectively.
For the testing set, consecutive 10-second image samples are selected
for both conditions to approximate the real-time testing scenario. The
prevalence of ST and non-ST conditions in the testing set can be found
in Table 1.

Model training

We adopt a transfer learning scheme to attain CNN models from a
comprehensively pretrained model rather than training the model
from ground up. The underlying logic is recycling model parameters
that capture common image features sharable across different com-
puter vision tasks from a pretrained model in favor of an effective and
efficient trainingprocess. The pretrainedmodel used here is Google's In-
ception V3, which has been trained from millions of images and 1000
classes from the ImageNet [13,14]. We keep all the model parameters
in the Inception model except the final layer, which is retrained by the
training images in the present study. In this way, the pretrained
model is adapted to identify image samples with significant ST changes.
To retrain the final layer, the number of epochs is set at 2000. The train-
ing/validating/testing data separation in the training set follows an
80%–10%–10% split, which enables quick assessment of bias-variance
tradeoff during the training process.

Model parameter investigation

To investigate the impact of training sample selection for the ST con-
dition on the model performance, three models are trained from ST
samples selected from different Gaussian distributions by tuning
form up the ST condition. Events marked in red represent the non-ST condition. Events
from analysis.



Fig. 3. ROC curves from individual testing recordings achieved by the 30-s model. Dashed
line denotes the guess level.
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standard deviations (5, 10, and 30 s). Fig. 2(a) shows the comparison of
sample distributions from different standard deviations when selecting
same number of samples. It shows the smaller the standard deviation,
the closer selected samples are to the maxima of ST changes. The learn-
ing curve of the proposed model is also investigated by varying the
number of recordings in the training set, from 5 to 30with an increment
of 5 recordings, during the model training. To achieve fair comparison,
performance from all models is tested and compared based on the
same testing set.

Performance evaluation

Model performance is evaluated both qualitatively and quantitively.
Receiver operating characteristic (ROC) curves from all recordings in
the testing set are firstly generated to provide qualitative evaluation of
individual performance. Based on ROC curves, optimal probability cutoff
points can be derived withmaximal Youden's index. Then various com-
mon performance metrics are calculated to provide quantitative evalu-
ation at the group level, including sensitivity, specificity and area under
the ROC curve (AUC). Since there are far more non-ST than ST samples
in the testing set (see Table 1), support-weighted F1 score is also calcu-
lated to take inter-class prevalence into consideration, which is
achieved by Scikit-learn library [15]. The Student t-tests are performed
to compare performance from different models, as well as their perfor-
mance against the guess level.

Results

Fig. 2(b) presents model performance from training samples se-
lected from Gaussian distributions with different standard deviations.
Each bar represents mean and standard deviation of AUCs across all
29 testing recordings. All three models yield comparable performance,
with the 30-second model achieving the highest mean AUC at 87.05%
(± 8.36%), followed by the 5-second model at 86.46% ± 9.05% and the
10-second model at 86.10% ± 8.89%. Statistical tests reveal significant
difference in performance only between 10-second and 30-second
models after Bonferroni correction for multiple comparisons (p b

0.01). Since 30-second model presents the best overall performance,
subsequent model and results are based on the common standard of
using 30 seconds as standard deviation for training sample selection.

Individual-level performance from each recording in the testing set
is shown in Fig. 3. Each curve in the figure depicts ROC curve from one
recording, and the dashed line depicts the guess level. The figure pro-
vides a qualitative evaluation of model performance, with all recordings
above the guess level. It also shows variation in performance across
Fig. 2. Impact of varying standard deviations (5, 10 and 30 s) for training sample selection on th
ST change from different standard deviations; Fig. 2(b) Comparison of classification performan
different recordings. Most recordings present ROC curves deflecting
far away from the guess line, indicating high true positive (i.e. power)
and low false positive rate are achievablewith carefully selected thresh-
old. However, there are also recordings presenting low power across all
thresholds, with ROC curves close to the guess line.

In addition to Fig. 3, quantitative and group-level performance re-
sults are presented in Table 2. The bottom rowpresents different perfor-
mance metrics achieved by the 30-s model trained with all 30
recordings in the training set. It shows a median AUC at 87.87%
(range: 63.07–99.28%), median F1 score at 87.38% (range:
72.44–97.69%), and median sensitivity at 82.64% while maintaining
comparable specificity at 80.34%. Besides, one-sample Student t-tests
show all metrics exceed the guess level with corrected significance
level (p ≪ 0.01). When examining the learning curve, all performance
metrics show a general increasing trend along with more recordings
in the training set, and best overall performance is achieved by the
model using all 30 recordings in the training set. It also reveals that com-
parable performance can already be achieved with as few as 5 record-
ings in the training set, delivering a median AUC at 86.71% (range:
64.72–99.20%) and median F1 score at 84.27% (range: 52.85–97.82%).

Discussion

The image-based approach adopted in the study is inspired by the
previous study on image-based ECG quality assessment [12]. The gen-
eral idea is to convert one-dimensional ECG temporal dynamics into
emodel performance. Fig. 2(a) Conceptual sample distributionswith respect to maxima of
ce (AUC) across different models. * indicates significant level of 0.01.



Table 2
Learning curve and quantitative evaluation of model performance at group level, including AUC, sensitivity, specificity and F1 score.

# Training Recordings AUC
(median: range)

Sensitivity
(median: range)

Specificity
(median: range)

F1 Score
(median: range)

5 86.71:
64.72–99.20%

82.08:
56.00–100%

77.88:
36.81–96.41%

84.27:
52.85–97.82%

10 84.11:
57.63–98.47%

80.92:
41.29–99.42%

73.01:
47.74–97.58%

83.32:
60.53–98.45%

15 86.69:
63.12–99.26%

80.20:
56.74–99.29%

79.94:
61.45–96.39%

84.92:
73.36–97.27%

20 87.88:
65.14–99.30%

80.56:
47.25–100%

80.22:
57.41–95.96%

85.82:
71.19–96.97%

25 87.74:
63.73–99.27%

81.92:
51.91–100%

81.44:
61.74–95.97%

87.31:
73.93–96.97%

30 87.87:
63.07–99.28%

82.64:
50.08–100%

80.34:
59.49–96.08%

87.38:
72.44–97.69%
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two-dimensional images so that image-based techniques and methods
can be leveraged. In our study, taking 10-second snapshots of ECG
waveforms transforms detection of ST changes into a computer vision
task, where the convolutional neural network has demonstrated state-
of-the-art performance. Then image features that differentiate ST from
non-ST conditions can be extracted by convolutional layers in the CNN
model for the classification of each 10-second image sample.

The sample representation of ECG signals as images also makes the
implementation of transfer learning scheme with Google's Inception
V3 readily accessible, since current transfer-learning setup with Incep-
tion requires input as images to obtain the transfer-learned CNN
model [13]. The transfer-learned model achieves median sensitivity at
82.64% to detect significant ST change, which is on par with previous
studies using the same database (78.90%, 78.10% and 78.28%) [16–18],
whilemaintaining a comparable specificity at 80.34%.Moreover, our ap-
proach using deep learning offers simple training process bypassing the
complex rule-defining and feature engineering steps in conventional al-
gorithms. By comparing to our previous feasibility study trained/tested
with much fewer recordings [19], our approach presents stable perfor-
mance in detecting significant ST change, which is further validated by
the learning curve (as shown in Table 2).

Our achievedperformance also demonstrates the viability of transfer
learning in biomedical research, especially when the original model has
been trained from a large image database with most of its images irrel-
evant to the medical domain. The adopted transfer learning approach
recycles model parameters from a pretrained model that can capture
common image features regardless of classes and only trains the final
layer or layers to equip the model with domain expertise. This could
also have great implication to other image-based biomedical studies,
such as computerized diagnostic classification using CT and MRI scans,
to achieve an efficient and effective training process with transfer
learning.

The duration of 10 s is selected in the present study with the follow-
ing considerations. First, our image-based approach is inspired by the
insight that clinicians usually read and identify pathological changes
in ECG through visual pattern recognition. The selection of 10-second
image samples aligns well with the current real-time clinical setup,
where most of bedside physiological monitors offer 10-second ECG
strips as the frontend presentation. The classification of ST change at
10-second resolution resembles the real-time clinical practice when cli-
nicians visually evaluate those ECG strips from bedside monitors screen
by screen.

Second, accurate classification of significant ST change at short-
duration level can serve as groundwork to multiple succeeding goals.
It's been found that many false ST alarms in current in-hospital ECG
monitors are induced by brief ST changes from turning, breathing, signal
noise etc., and introducing a delay in monitoring algorithms can effec-
tively reduce the number of alarms and mitigate alarm fatigue
[3,20,21]. Thus, the precise detection of short-duration ST change to-
gether with simple postprocessing steps, such as adding a delay, could
provide great power in tackling the issue of excessive false positive
alarms that plague the current ST monitoring software. On the other
hand, the precise detection of short-duration ST change offers valuable
information about temporal patterns of ST change that lead to down-
streamclinical endpoints, such asmyocardial infarction. These temporal
features could be further utilized by sequential models, e.g., recurrent
neural network (RNN), to make prediction of the more clinically mean-
ingful endpoints and to provide early warning.

When evaluating model performance at the individual level, we no-
tice some testing recordings present considerably lower performance
thanmost others. One plausible reason for this could be tied to one lim-
itation of the LTST database that only single event time, instead of event
duration, is provided for events of significant ST shift and noise. This
greatly undermines the validity of true labels in the data especially for
recordings with many episodes related to ST shift and ECG signal
noise, such as those aforementioned ones. Future effort is needed to
complete the annotation of these events in order to have them properly
accounted for during model training and testing.

Another limitation of the present study is that the ST detection algo-
rithm is built upon single-lead level, given that the database consists of
ECG recordings with 2- or 3- lead configuration and annotation infor-
mation is available at single-lead level. It has been found that true tran-
sient myocardial ischemia events typically have presence in contiguous
leads (leads closed placed), and taking such information into account
could improve detecting sensitivity [21]. Furthermore, some ischemic
ST events are lead specific and can be only detectable through certain
leads [22], so they might be missed by algorithms monitoring single or
very few number of leads alone. Under our current framework using
the image-based approach, one can easily add more information, such
as ECG tracings from other leads, to fit into the image representation.
Thus, one of our future directions is to establish an annotated ST data-
base with in-hospital 12-lead ECG recordings, based on which a multi-
lead predictionmodel can be built and evaluated under the same frame-
work as proposed here. Lastly, one common hurdle of adopting deep
learning in biomedical research is the lack of model transparency. Fur-
ther investigation of model parameters to reveal underlying image fea-
tures that contribute to themodel decision is of great importance to the
model understanding. Making the model findings transparent to clini-
cians may play an important role in clinical adoption and creation of
clinical decision support tools.

Conclusions

The present study lays out a pipeline for using deep learning to im-
prove the precision of ST-segment monitoring and to mitigate the
issue of alarm fatigue. The combination of image-based approach and
transfer-learning scheme adopted here provides efficiency and effec-
tiveness in training CNN models for detection of ST changes, with both
high sensitivity and specificity. Furthermore, robust performance has
been demonstrated from models obtained with various number of
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recordings for training. The detection of ST changes at the short-
duration level serves as a foundation for episode-level ST detection,
and could also have great implication to the prediction of more clinical
meaningful endpoints, such as MI, down the road.
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