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Abstract Background: The 12-lead Electrocardiogram (ECG) has been used to detect cardiac abnormalities in the
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same format for more than 70 years. However, due to the complex nature of 12-lead ECG interpretation, there
is a significant cognitive workload required from the interpreter. This complexity in ECG interpretation often
leads to errors in diagnosis and subsequent treatment. We have previously reported on the development of an
ECG interpretation support system designed to augment the human interpretation process. This computerised
decision support system has been named ‘Interactive Progressive based Interpretation’ (IPI). In this study, a
decision support algorithm was built into the IPI system to suggest potential diagnoses based on the
interpreter's annotations of the 12-lead ECG. We hypothesise semi-automatic interpretation using a digital
assistant can be an optimal man-machine model for ECG interpretation.
Objectives: To improve interpretation accuracy and reduce missed co-abnormalities.
Methods: The Differential Diagnoses Algorithm (DDA) was developed using web technologies
where diagnostic ECG criteria are defined in an open storage format, Javascript Object Notation
(JSON), which is queried using a rule-based reasoning algorithm to suggest diagnoses. To test our
hypothesis, a counterbalanced trial was designed where subjects interpreted ECGs using the
conventional approach and using the IPI + DDA approach.
Results: A total of 375 interpretations were collected. The IPI + DDA approach was shown to improve
diagnostic accuracy by 8.7% (although not statistically significant, p-value = 0.1852), the IPI + DDA
suggested the correct interpretation more often than the human interpreter in 7/10 cases (varying statistical
significance). Human interpretation accuracy increased to 70% when seven suggestions were generated.
Conclusion: Although results were not found to be statistically significant, we found; 1) our decision
support tool increased the number of correct interpretations, 2) the DDA algorithm suggested the
correct interpretation more often than humans, and 3) as many as 7 computerised diagnostic
suggestions augmented human decision making in ECG interpretation. Statistical significance may
be achieved by expanding sample size.
© 2017 Elsevier Inc. All rights reserved.
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Introduction

Cardiac abnormalities are often manifested in a 12-lead
Electrocardiogram (ECG) [1]. However, due to the complex
nature of 12-lead ECG interpretation including analysis of
multifarious leads, deflections and patterns, a significant
uthor. Room 16J27, University of Ulster, Jordanstown
ewtownabbey, Co., Antrim BT37 0QB, UK.
cairns-a3@email.ulster.ac.uk

16/j.jelectrocard.2017.08.007
sevier Inc. All rights reserved.
cognitive workload is required from the interpreter [2]. This
is in addition to the interpreter having to refer to an intricate
knowledge-base in cardiac pathology and cognitively
cross-referencing a large set of ECG criteria. This complex-
ity in ECG interpretation often leads to errors in diagnoses
and treatment. Diagnostic accuracy has been reported to be
as low as 40% [3–5]. It has been shown that even expert
clinicians can act impulsively in providing a diagnosis based
on their first impression [5–9] and, in turn, potentially miss
co-abnormalities due to ‘early satisfaction syndrome’ and
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cognitive biases such as anchoring or confirmation bias
[8–10]. It is therefore imperative to optimise how physicians
interpret the 12-lead ECG.

The 12-lead ECG is often presented alongside a
computerised diagnosis to assist the interpreter. However,
this computerised analysis is firstly, often inaccurate, as
machine algorithms often fail to recognise patterns in noisy
ECG signals [11–14]. Secondly, with common computerised
analysis often being inaccurate [12,14,15] and only provid-
ing a single proposed diagnosis, cognitive biases can be
incurred, including; 1) anchoring bias (fixation on a
premature suggestion), 2) confirmation bias (interpreters
seek diagnostic features to confirm, rather than falsify, a
diagnosis), or 3) premature closure (an interpreter accepting
a diagnosis before verification) [15,16]. Therefore, numer-
ous studies have recommended computerised ECG interpre-
tation should always be accompanied by clinical human
affirmation [17,18].

Whilst the 12-lead ECG presentation has remained
unchanged for more than 70 years, [19] medical practices,
including the NHS in the UK, are striving towards a
paperless environment [20]. This provides an opportunity to
use interactive computing and touch screens to aid the
human interpretation of the ECG. Opportunities such as this,
as well as the motivation to integrate the human interpreter in
the decision making process, have inspired our previous
work where we developed an approach that provided a set of
interactive questions and prompts to guide an interpreter
through the ECG reporting process. The model was named
‘Interactive Progressive based ECG Interpretation’ (IPI)
[21]. Coupling this previous research with motivations to
further increase diagnostic accuracy, and reduce cogitative
bias, we have augmented the IPI model with a rule-based
algorithm to generate multiple computerised diagnostic
proposals.

Thus, we hypothesise that semi-automatic interpretation
is an optimal man-machine model for ECG interpretation.
This hypothesis is based on the fact that the human cognitive
memory prevails in pattern recognition (i.e. in noisy signals)
enabling the interpreter to provide more accurate annotations
whilst a machine performs better at using annotations to
reason against a large set of rules (ECG criteria).
Methodology

A differential diagnosis algorithm (DDA) has been
integrated into the IPI system to provide multiple potential
ECG diagnoses based on a human interpreter's ECG
annotations (feature detection, waveform measurements
and segment analysis). The number of suggestions generated
by the DDA varies depending on human annotations. To
accomplish this, the rule-based algorithm evaluates an
interpreters' response to each inputted annotation and
matches these annotations against a set of ECG diagnostic
criteria. As a de-biasing strategy, multiple potential ECG
diagnoses are presented following the interpreter inputting
their annotations. The algorithm will only provide a
diagnostic suggestion when the annotations match at least
50% of the diagnostic criteria. Pseudo code for the DDA can
be seen in Fig. 1, and a screenshot of the system can be seen
in Fig. 2. The model and algorithm design is further
described in [22].

The algorithm was implemented using web technologies
including JavaScript, PHP, HTML and CSS. To store
diagnostic criteria, the system uses the device agnostic data
model and storage format known as JavaScript Object
Notation (JSON) for defining the rules. These rules are then
queried using the decision support algorithm programmed in
JavaScript.

Study design

A counterbalanced study design was used to compare the
diagnostic accuracies achieved when interpreters use the
IPI + DDA system in comparison to the conventional
approach to reading ECGs (i.e. all 12 leads presented in
the commonly accepted 3 × 4 + 1R format). Therein, each
interpreter interpreted five ECGs using the conventional
method and five ECGs using the IPI method. The entire
cohort was split into two subgroups referred to as A and B.
Group A interpreted ECG numbers 1–5 using the conven-
tional method and ECGs numbered 6–10 using the
IPI + DDA method. Conversely, group B interpreted
ECGs 1–5 using the IPI + DDA method, and ECG 6–10
using the conventional method. All interpreters were asked
to provide a self-assessed confidence rating for each
interpretation (scale 1–10, where 10 = very confident).

All chosen ECGs (ten) derived from a publically available
ECG repository with predefined pathologies and interpreta-
tion difficulty rankings [23] and were selected to align with
the UKs National Health Service (NHS) healthcare science
practitioner training programme [24] and to express the
European Society of Cardiology (ESC) Core Curriculum for
the General Cardiologist [25]. Seven of the ten ECGs exhibit
cardiac pathologies (e.g. STEMI) whilst the remaining three
ECGs exhibit anomalies (e.g. lead misplacement or
dextrocardia).

Recruitment

Recruitment resulted from convenience sampling from
four available participant cohorts; 1) International Society
for Computerized Electrocardiology (ISCE) delegates, 2)
junior doctors in two Scottish NHS trusts, 3) clinical
physiology students and 4) European Society of Cardiology
members (ESC). Participation was undertaken in both a
classroom environment and remotely via website hyperlinks.
As the system was developed responsively using web
technologies, it is device and platform agnostic and can be
accessed with any device with an internet connection.

Data collection

Before beginning, interpreter demographics were collected
using an online form. These include; age, gender, occupation,
years of experience interpreting ECGs and number of ECGs
interpreted annually. Interpreters were also required to give
informed consent before proceeding to interpret all 10 ECGs.
All annotations are collected and saved via an AJAX function



Fig. 1. Pseudo code illustrating the DDA which was implemented using JavaScript. The code illustrates data collection, a number of data–specific criteria
searches, loops to generate suggestion list and final suggestion display.
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in a MySQL database on an Apache web server. In total, there
were 49 interpreters included in this study. Of which, 35
participant completed ECG interpretations using both ap-
proaches, whilst 14 participants did not complete interpreta-
tions using both approaches but their completed interpretations
Fig. 2. Presentation of the IPI+DDA system on mobile devices. An example of generated suggestion displays, questions and prompts.
were recorded. This resulted in 280 interpretations from 35
participants (as some participants did not complete all ECGs),
plus 70 interpretations from 14 participants who did not use
both methods. Overall 375 interpretations were recorded (215
control interpretations, 160 IPI + DDA interpretations).



Table 1
Table illustrating the number of diagnostic suggestions from the IPI+DDA,
number of correct algorithm diagnoses, number of instances (i.e. the number
of times the relative number of suggestions was generated), and the
percentage of instances containing the correct suggestion.

Number of
diagnostic suggestions
from the IPI + DDA

Number of
instances

Number of instances
that contain a correct
diagnostic suggestion

Percentage
of correct
algorithm
diagnosis (%)

1 6 0 0
2 8 5 62.5
3 15 4 26.7
4 21 3 14.3
5 18 5 27.8
6 14 4 28.6
7 10 5 50
8 8 5 62.5
9 12 9 75
10 8 1 12.5
11 11 6 54.6
12 8 6 75

Table 2
Table illustrating the number of suggestions compared to the number of
correct human interpretations, the number of suggestion instances (i.e. the
number of times the relative number of suggestions was generated), and the
relative human accuracy as a percentage.

Number of
diagnostic suggestions
from the IPI + DDA

Number of
instances

Number of instances
that contain a correct
human interpretation
suggestion

Percentage
of human
accuracy (%)

1 6 1 16.7
2 8 4 50
3 15 7 46.7
4 21 6 28.6
5 18 9 50
6 14 9 64.3
7 10 7 70
8 8 2 25
9 12 4 33.3
10 8 1 12.5
11 11 5 45.5
12 8 3 37.5
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Statistical analyses

Data was analyzed using the Structured Query Language,
Microsoft Excel [26] and the R programming language [27].
A Shapiro–Wilk test was used to test for normal distribution,
data was found to be not normally distributed. A two-tailed
Mann-Whitney U test was used to test for statistical
significance between interpretation methods. To compare
statistical significance between interpretation method pro-
portions we conducted Chi-squared tests. The p-value used
to determine statistical significance was ≤0.05.
Results

The percentage of correct interpretations for reading
ECGs using the conventional approach was 42.61% whilst
interpretations using the IPI + DDA method was 51.35%
(chi-squared p-value = 0.1852). Thus, interpretations result-
ing from use of the IPI + DDA were 8.7% more accurate.
Fig. 3. Box plot illustrating the range and median of the correct diagnosis
rank order in the list of suggestions generated by the DDA.
The IPI method did not improve the detection of ECGs
which had been recorded where there was lead misplacement
or dextrocardia despite the IPI + DDA interface directly
prompting users to carry out an inspection for lead
misplacement. Overall self-rated confidence in ECG inter-
pretation using the control method was 5.37/10 (SD = 2.95)
whilst the IPI method was 5.58/10 (SD = 3.02). This
indicates interpreters feel 3.9% (although not statistically
significant, Z-Score = −0.7, p-value = 0.48) more confident
in interpreting ECGs using the IPI method. The average
duration of interpretations using the conventional method
was 108.55 s (SD = 32.57) and 629.94 s (SD = 266.98)
when using the IPI method. Thus, the average IPI method
duration was 6.19 times longer. However, the 6-fold increase
in interpretation time is confounded by participants being
unfamiliar users of the system. This is highlighted in further
interpretation time analysis. As users become more familiar
with the system interpretation time decreases (mean time
shortening = 130.25 s).
Correct suggestion ranks of the decision support algorithm

Due to the DDA design, there is a variable number of
suggestions listed based on interpreter input. However,
we found that between 3 and 6 suggestions were most
frequently presented (44% of all interpretations). The mode
rank of the correct suggestion in the list was 3 (mean = 3.63,
SD =3.01). The correct suggestion appeared within the first
three suggestions in 60% of interpretations (refer to Table 1
and Fig. 3).
Algorithm accuracy vs. number of suggestions

We found that when 2 suggestions are presented, there is
a 62.5% likelihood the right suggestion will be in the list.
However, we also found that when 9 suggestions are
generated there is a 75% likelihood of the correct suggestion
appearing in the list.



Table 3
Table illustrating the percentage difference in accuracy between the
IPI+DDA method and the human interpreter in ECG interpretation.
Positive inflection illustrates the algorithm is more accurate, conversely a
negative inflection illustrates human interpretation was more accurate.

ECG number Percentage difference in
accuracy between DDA
and the human interpreter
(positive = algorithm more
accurate, negative = human
more accurate)

Test of equal or
given proportions
(chi-squared)

STEMI 10.53 p-Value = 0.7271
LVH −37.50 p-Value = 0.06789
RAE 31.25 p-Value = 0.1365
VT −28.57 p-Value = 0.2519
SVT −50.00 p-Value = 0.009598
Atrial
fibrillation

5.88 p-Value = 1

Limb lead
misplacement

22.22 p-Value = 0.2291

Dextrocardia 25.00 p-Value = 0.1742
Chest lead
misplacement

26.67 p-Value = 0.1709

Normal sinus rhythm 28.57 p-Value = 0.1052
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Human accuracy vs. number of suggestions

When comparing human interpretation accuracy with
varying number of suggestions generated by the DDA, we
found that the human interpreter will provide the correct
interpretation 70% of the time when seven suggestions are
generated. When two, three, five or six suggestions are
generated the human interpreter is more than 45% likely to
interpret the ECG with a correct answer. This percentage is
greater than the percentage of correct human interpretations
when using the conventional method of ECG interpretation.
More details are reported in Table 2.

Algorithm accuracy vs. human accuracy

When comparing algorithm suggestions directly with the
human interpretations for each ECG we find in 7/10 cases the
DDA algorithm provided more correct interpretations than the
human interpreter (varying statistical significance, refer to
Table 3). However, human interpretation was more accurate
when reading ECGs exhibiting Left Ventricular Hypertrophy
(LVH), Ventricular Tachycardia (VT) and Supraventricular
Tachycardia (SVT). In the case of LVH, one possible reason
for this is that the system does not require input for QRS
amplitude. Therefore, the criteria for LVH is incomplete
resulting in the algorithm being unable to process relevant data
to generate an accurate suggestion. Similar, assumptions can
be made in the cases of VT and SVT.
Discussion

There is potential to improve the accuracy of ECG
interpretation by using an interactive decision support
system to augment the human interpretation process. We
found the IPI + DDA system increased the number of
correct interpretations by 8.7% and improved interpreter
self-rated interpretation confidence by 3.9% (although
results were not statistically significant). In 70% of cases
the IPI + DDA suggested the correct interpretation more
often than the human interpreter. With the ability to augment
the interpretation process with potential diagnoses, we
identified that displaying as many as seven computerised
diagnoses improves human diagnostic accuracy in ECG
interpretation.

The IPI + DDA system was not compared against results
from a previous study in which the IPI model was used
without the DDA [21], for a number of reasons; participants
were from different cohorts, each study had a different
experimental design (two arm vs one arm counter balance),
the starting ability is superior in IPI cohort. With this all in
mind, we have noted that overall accuracy did not improve
between the IPI and IPI + DDA methods.

Limitations include relatively small numbers of ECGs
used within the system for this study. Also, a relatively small
number of interpreters with varied experience was also
present. However, a respectable number of ECG interpreta-
tions was recorded. As a result, the statistical comparisons
are widely not significant, which weakens any definitive
conclusions. A further limitation is the lack of control in the
gold standard for the ECG diagnoses used with the study.

Numerous adaptations could be made to enhance this
system. Refinements could be made to the diagnostic criteria
stored in the JSON object, for example, adding further
specific criteria to help diagnose LVH, VT and SVT. A
second enhancement could be to define and implement
weightings to correspond with the importance of each
diagnostic criterion in the JSON object allowing the DDA
algorithm to improve how it rank its suggestions. Thirdly,
some annotations could be pre-calculated by accurate
computerised analysis, this could decrease interpretation
time and increase diagnostic accuracy. One further enhance-
ment could be to create an interface to allow clinicians to
edit/update diagnostic criteria following a verification
process.
Conclusion

Although results were not statistically significant, we
found; 1) our decision support system increased the number
of correct interpretations, 2) the DDA algorithm suggested
the correct interpretation more often than humans, and 3) as
many as 7 computerised diagnostic suggestions augmented
human decision making in ECG interpretation. Statistical
significance may be reached by expanding the sample size.
With future of ECG interpretation likely to be paperless,
there is an opportunity to improve ECG interpretation
accuracy using an interactive decision support system.
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