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Abstract 

Long QT syndrome (LQT) is a congenital disease 
caused by a mutation of genes that leads to a distortion 
and a prolongation of the T-wave on standard ECG. 

The present study proposes an algorithm to 
automatically discriminate between patients with type 1 
or type 2 LQT syndrom. The core of the method is the 
modeling of the T-wave recomputed on its principal lead 
by a single parameterized function named Bi-Gaussian 
Function (BGF). From all the features computed from 
this model, a statistical analysis was performed to select 
only the most relevant ones for the discrimination. A 
classifier was then designed through a Linear 
Discriminant Analysis (LDA).  

A database composed of 410 LQTS patients whose 
genotype is known was used to train the classifier and 
evaluate its performances.  

1. Introduction
Long QT syndrome (LQT) is a congenital disease 

characterized by an abnormal repolarization process.  It is 
caused by the mutation of several genes, all of which 
encoding cardiac ion channels. 13 LQT types associated 
to different gene combinations were identified; all of 
them resulting in the distortion and the prolongation of 
the T-wave, as visualized on the body surface ECG. Type 
1 and type 2 LQT are the most common forms and are 
respectively related to the slow and to the fast 
components of the delayed rectifier potassium current. 
Genotype has proved to be important for clinical 
management of LQTS patients [1]. However, the 

turnaround time may be long and T-wave morphology 
phenotyping remains critical at bedside to discriminate 
between LQTS types.  

The present work aims at designing a classifier that 
automatically associates to LQT 12 lead ECG records the 
probability of belonging to type 1 or type 2. The proposed 
methodology is based on a machine learning approach to 
model the T-wave morphology, allowing the extraction of 
various features; a statistical analysis is then performed to 
select the most relevant finally used for the classification 
task.  

2. Data
The database consists in 410 records of 12 lead ECGs, 

266 carried out on type 1 LQT patients and 144 on type 2 
LQT patients with genotype confirmed diagnostic. 196 
records (124/72), randomly chosen, were picked up for 
the feature selection process and the classifier design both 
presented below. The remaining 214 records were used 
for the estimation of the performances. 

3. Methods
Since LQT syndrome is associated to an abnormal 

repolarization process, the proposed study focuses on the 
T wave analysis: the first step, detailed in the next 
section, is the computation of features for its 
characterization. Then, a statistical analysis expounded in 
section 3.2 is performed to select the most relevant 
features for classification; and at last, the classifier 
(section 3.3) is designed with the selected features. The 
overall process from the feature extraction to the classifier 
design is illustrated on Figure 1. 

Figure 1. Overview of the classifier design. From a median beat, several features are computed on the T-wave from a PCA analysis and a parameterized 
model; then a statistical analysis is performed to select only the relevant features for the classifier designed.  

437ISSN 0276-6574 Computing in Cardiology 2012; 39:437-440.



3.1.  ECG processing, feature extraction 
Time averaging and lead reduction  

A standard 12D ECG record usually encompasses a 
long strip of data. In order to gather the information onto 
a minimal representation, both the number of beats 
(usually several tens) and the number of leads (12 leads) 
are reduced. To that end, a median beat on each lead is 
computed (CalECG, Amps llc, NY, US). Then, the spatial 
reduction from 12 leads to 1 is performed using a 
vectorcardiographic analysis of the T wave [2, 3]. In 
vectorcardiography, the T-wave is represented in the 8-
dimensional space in which each dimension corresponds 
to one independent lead (I, II, V1 to V6). The ‘principal 
axis’ of the T wave is computed using Principal 
Component Analysis (PCA) and is used as a virtual lead 
onto which the T-wave representation is projected to 
obtain a 1-D signal (Figure 2).  

 

 
Figure 2. The Principal Component Analysis of the T wave leads to a 
representation in a 8 dimension space derived from the 8 independent 
leads. The first component (P1) is holding the maximum amount of 
variability and it is used as a virtual lead for the T wave representation 
for modeling.  
 

The Principal Component Analysis (PCA) of the T 
wave leads to eight eigenvalues (λ1> ...> λ8) and to the 
corresponding eigenvectors. Each eigenvalue represents 
the amount of energy of the T-wave on the corresponding 
eigenvector; the sum of all the eigenvalues represents the 
total power of the T wave [4]. The eigenvector associated 
to the largest eigenvalue λ1 (ie associated to the maximum 
of energy) is the principal axis of the Twave.  
Features extracted from the PCA analysis 

Three features were evaluated from the PCA 

decomposition of the T wave. Several studies have shown 
that the T-wave representation lies preferably in the 2D 
space based on the first two eigen vectors, and that the 
components outside the 3D space, called the non-dipolar 
components, may be associated to regional ventricular 
repolarization heterogeneities [5, 6]. These characteristics 
are associated with two features that can be estimated 
from the eigenvalues as follows:  

 

   and    

A third feature is related to the symmetry of the 
representation in the 2D plane and is estimated by: 

 

T-wave modeling 
The projection of the T-wave on the principal axis is 

then modeled by a five-parameter function composed of 
two half-gaussian functions with different amplitudes 
named Bi-Gaussian function (BGF) [7] (Figure 3). Three 
measures can assess the quality of the modeling: the mean 
error , the mean square error EQM, and the correlation 
coefficient R2: 

 

 

 

 

where y is the T-wave signal,  the mean value of y, 
the BGF model and N the number of samples.  

Then, the five parameters of the T-wave model are 
used to compute surrogates of several standard 
repolarization features (Table I line 5 to 13).  

3.2. Feature selection 
Due to the small size of the available database, the 

number of features must be reduced in order to prevent 
overfitting when training the classifier and to obtain a 
good generalization. We use here a forward feature 
selection process associated to a random probe method 
[8]. This method is twofold: First, the candidate features 
are ranked according to their relevance for the 
discrimination task; and, second, each feature is assigned 
a number that estimates its relevance by the use of a 
‘probe’ random vector. This section briefly reviews the 
methodology and its mathematical basis. 
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Orthogonal Forward Regression 
Let us consider a two-class discrimination task in a 

space X of dimension q. When the discriminant function 
is linear, the classification design aims at finding the 
values of the coefficients wj such that:  

 

for all the examples xi=[x1
i, x2

i
, …, xq

i] of the training set, 
where Qp is a subset of p features from the q available 
ones (p≤q), and yi the label of xi.  

The Orthogonal Forward Regression (OFR) procedure 
is an iterative process that searches for a subset Qp to 
design the classifier without exploring the p!/(q!(n-p)!) 
possible combinations of features.  

Let dk be the standardized vector of the kth feature for 
the N points of the training set: dk = [x1

k, x2
k,…, xN

k]T. The 
first iteration of the OFR procedure consists in selecting 
the feature that best explains the labels ie that has the 
minimum angle with the standardized label vector  
y=[ y1,…,yN]T. Thus, the following quantity is computed 
for each feature k: 

  

The feature vector with the largest value is selected.  
Then, the remaining feature vectors, as well as the label 

vector, are projected orthogonally to the selected feature 
vector. In this subspace, the process is iterated and the 
next most relevant feature vector is selected according to 
the same rule. The procedure ends when the p features are 
ranked or if a stop criterion is met. The efficiency and the 
quality of the OFR procedure has been shown for linear 
models by Chen et al. in [9] and [10] and also for non-
linear modeling by [11], and [12] 

 
Fig. 3. Bi-Gaussian function modeling of a T-wave. Several features can 
be computed from the 5 parameters of the model (Line 5 to 13 table 1).  
 
Probe Vector 

The probe vector methodology allows to stop the OFR 
procedure without setting a priori a value to p. A random 
vector – the ‘probe’- is generated and appended to the set 
of feature vectors. The feature vectors and the probe are 
ranked in decreasing relevance order by the OFR 
orthogonalization process. This process is repeated for a 
number of probe vectors and the probability distribution 
function of the rank of the probe vectors is estimated. The 
probe vectors are not relevant for the discrimination task, 
and the features ranked after the random probe with a 
probability larger than a given threshold are rejected. 
More details on the random probe method can be found in 
[8] [13]. 

 

 
Fig. 4. Probability distribution function of the rank of the probe vector. 
Each feature is associated to its probability to be irrelevant for the 
classification task. The threshold is set to 10 % leading to select the 4 
features. 
 

Figure 4 shows the results of the ranking process for 
the fifteen features on the LQT discrimination task. 
Setting a threshold value of 10%, this graph shows that 
four features meet the requirement and are thus selected 
as inputs for the classifier.   

3.3. Classification 
The aim of the classifier design is to delineate the input 

space into two parts: one associated with the LQT1 and 

Table 1. 
Candidate features for the classification process. 

# 
Quantity Description  

1 T3D Proportion of the T wave in a 3D space  
2 TWR T wave residuum (=1- T3D) 

3 T2D Proportion of the T wave in a 2D space 
4 TWL

 Shape of the T-wave loop 
5 μ QTpeak interval 
6 σ1 Ascending slope of the T wave 
7 σ2 Descending slope of the T wave 
8 A1 T wave amplitude on the right side 
9 A2 T wave amplitude on the left side 
10  A1 

– A2 ST segment elevation 
11 μ+2σ2 QT interval 
12 σ1/ σ2 T-wave symmetry ratio  
13 2σ1+2σ2 T-wave width  
14 ε Error for the T-wave modeling  
15 EQM Mean square error of the model 

16 R2 Correlation coefficient between the model and 
the T wave 
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the other with LQT2. Here, a Linear Discriminant analysis 
(LDA) was performed on the data, and the separating 
hyperplan was defined as the location where the 
probabilities are equal to 0.5.  

The input space is in turn the 4-dimensional space 
spanned by the 4 selected features; and the 2-dimensional 
subspace spanned by the two best one. The output is the 
probability of belonging to class 1 or class 2 given the 
following property:  

 
where x is a vector in the input space. The label assigned 
to any vector x is LQT1 if P(LQT1|x)>0.5, LQT2 
otherwise.  

Moreover, a ‘unlabeled’ label can be assigned to the 
data for which the probability of being of type 1 or of 
type 2 is not high enough. We set this confidence 
threshold to 0.66: if 0.66>P(LQTi|x)>0.5 (i=1 or 2), x is 
unlabeled.  

4. Results and discussions 
The performances of the method were assessed on the 

validation set and are presented in Table II in both cases: 
for an input space of 2 dimensions and an input space of 4 
dimensions. The left part of the table presents the results 
obtained over the entire databases (training and validation 
sets); whereas the right part shows the results only for 
reliable results that represent a subgroup of the dataset 
(see ‘# classified data’ column).  

These results suggest that, when using 2 features, the 
classifier is able to provide a correct diagnosis in about 
88% of the classified examples if we accept no decision 
for 47% of the data. The unlabel group can be decreased 
to 35% by adding two more features in the input space.   

In order to estimate the performances of the proposed 
method in a clinical context, a validation against manual 
annotations from cardiologist could be the next step. 
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Table 2. 
Results over the test database. 

 Total database  Reliable labels only 

 Correct 
classification 

Sensibility 
LQT type 1 

Sensibility 
LQT type 2 

Correct  
classification  

 # Classified  
data 

Sensibility 
LQT type 1 

Sensibility 
LQT type 2 

2-Dimensional input space        
Learning Set 83.2 94.4 63.9 86.3 102 / 196 94.9 74.4 

Validation Set 79.4 90.8 56.9 87.8 115 / 214 93.8 74.3 
4-Dimensional input space        

Learning Set 82.7 91.9 66.7 85.4 130 / 196 90.2 77.1 
Validation Set 79.0 85.2 66.7 86.5 138 / 214 90.6 73.6 
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